

Introduction

CryoMaster series liquid nitrogen container combined with the advantages of little nitrogen consumption and medium range storage capacity, meeting different needs of professionals all over the world.
This kind of container provides high efficiency of large capacity sample cryopreservation with light weight and small space occupying. All models include racks, PC cryoboxes and lockable lids.

Key Features

1 Equip with racks and box
己 Dual-lock construction
3 Durable aluminum construction
4 Larger storage capacity, less liquid nitrogen consumption
5 Compatible with all major storage box brands

Real-time Liquid Level Monitoring System

Liquid level monitoring system continuously monitors the temperature inside the container. The liquid level monitoring system matchs all CryoMaster models, optimal choice for long time monitoring of samples storage. It realizes reminding users to add liquid nitrogen timely too. There are Cryomonitor 1000/2000 models.

Cryomonitor 2000 Automatically Filling System
It is very useful to fill liquid nitrogen automatically for long time sample storage. Cryomonitor 2000 constantly monitors temperature inside the container, controlling liquid filling solenoid value open and close, supplying liquid nitrogen timely.

Ultra Low-power Consumption Liquid Level Monitoring System Data collected by Smart Sensor, and then transferred to cloud storage by Black Box. Users only have to log on Cold Cloud to query and download data. This system is the latest monitoring product easy installation and accurate data.

Model	CryoMonitor 1000P
Temperature Range	$-200 \sim 200^{\circ} \mathrm{C}$
Temperature Accuracy	$\pm 0.1^{\circ} \mathrm{C}$
Temperature Sensor	PT-1000
Liquid Level Range	$160 \sim 570 \mathrm{~mm}$
Liquid Level Tolerance	$\pm 10 \mathrm{~mm}$
Power Supply	Built-in Nickel Battery
Relay (Optional)	Wi-Fi connection, data transfer, checking and storage

Technical Parameters

\star Static evaporation rate and static holding time are nominal. Actual rate and holding time will be affected by the condition of container usage, atmospheric conditions
and manufacturing tolerances.
$\star \star$ Normal Working Duration is an arbitrary reference, applying to estimate container performance under normal operating conditions. Actual working time may vary
due to atmospheric conditions, container usage history, manufacturing tolerances and individual paterns of usage. Divide static holding days by 1.6 and

